gladilov.org.ru gladilov.org.ua

53 заметки с тегом

интернет

Позднее Ctrl + ↑

Я теперь Arctic Code Vault Contributor

GitHub мои репозитории поместил в Arctic Code Vault и я теперь Arctic Code Vault Contributor.

Хотя немного пугают коментарии типа таких:

Ну хоть где-то мой код используют.

расслабься, чувак — они его — ЗАК0ПАЛИ!

И рядом стоят два ведра исходников виндовс 10 и офис 365

А архив порнхаб будет сохранен?

Не имеет смысла: это огромнейший объём тривиально восстановимой информации.

Ну хз-хз, как это будет тривиально после глобальной ядерной войны.

Как, как. Берёшь и ибёшси

Сохранили, чтобы будущие поколения смеялись над нами, читая этот код

А что, сейчас кто-то смеётся над содержимым глиняных табличек и прочих пергаментов?

Ты сравниваешь зарождение письменности с 💩

2020   интересное   интернет   мну   события   софт

Huawei развивает протокол NEW IP для сетей будущего

Компания Huawei совместно с исследователями из Университетского колледжа Лондона ведёт разработку сетевого протокола NEW IP, который учитывает тенденции развития телекоммуникационных устройств будущего и повсеместное распространение устройств интернета вещей, систем дополненной реальности и голографических коммуникаций. Проект изначально позиционируется как международный, в котором могут принять участие любые исследователи и заинтересованные компании. Сообщается, что новый протокол передан на рассмотрение в Международный союз электросвязи (ITU), но он будет готов для тестирования не раньше 2021 года.

Показать

Протокол NEW IP предоставляет более эффективные механизмы адресации и управления трафиком, а также решает проблему организации взаимодействия разнотипных сетей в условиях роста фрагментации глобальной сети. Всё более актуальной становится проблема обмена информацией между разнородными сетями, такими как сети устройств интернета-вещей, промышленные, сотовые и спутниковые сети, в которых могут применяться собственные стеки протоколов.

Например, для IoT сетей желательно использование коротких адресов для экономии памяти и ресурсов, промышленные сети вообще избавляются от IP для повышения эффективности обмена данными, спутниковые сети не могут использовать фиксированную адресацию из-за постоянного перемещения узлов. Частично проблемы попытаются решить при помощи протокола 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks), но без динамической адресации, он не настолько эффективен, как хотелось бы.

Второй решаемой в NEW IP проблемой является то, что IP ориентирован на идентификацию физических объектов в привязке к их местоположению, и не рассчитан на идентификацию виртуальных объектов, таких как контент и сервисы. Для абстрагирования сервисов от IP-адресов предлагаются различные механизмы маппинга, которые лишь усложняют систему и создают дополнительные угрозы приватности. Как решение для улучшения доставки контента развиваются архитектуры ICN (Information-Centric Networking), такие как NDN (Named Data Networking) и MobilityFirst, предлагающие использовать иерархическую адресацию, которые не решают проблему с доступном к мобильному (перемещаемому) контенту, создают дополнительную нагрузку на маршрутизаторы или не позволяют установить end-to-end соединения между мобильными пользователями.

Третьей задачей, которую призван решить NEW IP, является тонкое управление качеством сервиса. В будущих системах интерактивной коммуникации потребуются более гибкие механизмы управления пропускной способностью, требующие применения разных методов обработки в контексте отдельных сетевых пакетов.

Отмечаются три ключевые особенности NEW IP:
• IP-адреса переменной длины, способствующие организации обмена данными между различными типами сетей (например, для взаимодействия устройств интернета вещей в домашней сети могут использоваться короткие адреса, а для обращения глобальным ресурсам длинны). Не обязательность указания адреса источники или адреса назначения (например, для экономии ресурсов при отправке данных с датчика).

• Допускается определение разной семантики адресов. Например, помимо классического формата IPv4/IPv6, можно использовать вместо адреса уникальные идентификаторы сервиса. Данные идентификаторы обеспечивают привязку на уровне обработчиков и сервисов, не привязываясь к конкретному местоположению серверов и устройств. Идентификаторы сервисов позволяют обойтись без DNS и маршрутизировать запрос к ближайшему обработчику, соответствующему указанному идентификатору. Например, датчики в умном доме могут отправлять статистику определённому сервису без определения его адреса в классическом понимании. Адресоваться могут как физические (компьютеры, смартфоны, датчики), так и виртуальные объекты (контент, сервисы).

По сравнению с IPv4/IPv6 в плане обращения к сервисам в NEW IP отмечаются следующие преимущества: Более быстрое выполнение запроса за счёт прямого обращения по адресу сервиса без ожидания на определение адреса в DNS. Поддержка динамического развёртывания сервисов и контента — NEW IP адресует данные на основании принципа «что нужно», а не «где получить», что кардинально отличается от принятой в IP маршрутизации, основанной на знании точного местоположения (IP-адреса) ресурса. Построение сетей с оглядкой на информацию о сервисах, которая учитывается при расчёте таблиц маршрутизации.

• Возможность определения произвольных полей в заголовке IP-пакета. Заголовок допускает прикрепление идентификаторов функций (FID, Function ID), применяемых для обработки содержимого пакета, а также привязываемых к функциям метаданных (MDI — Metadata Index и MD — Metadata). Например, в метаданных может быть определены требования к качеству сервиса, в соответствии с которыми при адресации по типу сервиса будет выбран обработчик, обеспечивающий максимальную пропускную способность.

В качестве примеров привязываемых функций приводятся ограничение крайнего срока (deadline) для пересылки пакета и определение максимального размера очереди во время пересылки. Маршрутизатор во время обработки пакета будет использовать для каждой функции свои метаданные — для вышеприведённых примеров в метаданных будет передана дополнительная информация о крайнем сроке доставки пакета или максимально допустимой длине сетевой очереди.

Растиражированные в СМИ сведения о встроенных возможностях, обеспечивающих блокировку ресурсов, способствующих деанонимизации и вводящих обязательную аутентификацию, в доступной технической спецификации не упоминаются и, судя по всему, являются домыслами. Технически NEW IP лишь предоставляет больше гибкости при создании расширений, поддержка которых определяется производителями маршрутизаторов и программного обеспечения. В контексте возможности смены IP для обхода блокировок, блокировка по идентификатору сервиса может сравниться с блокировкой доменного имени в DNS.

Источники:
https://support.huawei.com/enterprise/ru/doc/EDOC1000173015
http://prod-upp-image-read.ft.com/6f569c60-7045-11ea-89df-41bea055720b
https://www.huaweiupdate.com/new-ip-a-new-standard-for-core-network/
https://itc.ua/news/kitaj-i-huawei-predlagayut-internet-protokol-new-ip-s-vozmozhnostyu-otklyucheniya-konkretnyh-adresov/
http://allunix.ru/2020/04/01/huawei-развивает-протокол-new-ip-нацеленный-на-и/
http://www.opennet.ru/opennews/art.shtml?num=52648
https://www.engadget.com/2020-03-30-china-huawei-new-ip-proposal.html

Let’s Encrypt перешёл к проверке хоста из разных подсетей

Некоммерческий удостоверяющий центр Let’s Encrypt, контролируемый сообществом и предоставляющий сертификаты безвозмездно всем желающим, объявил о внедрении новой схемы подтверждение полномочий на получение сертификата для домена. Обращение к серверу, на котором размещён используемый в проверки каталог «/.well-known/acme-challenge/», теперь будет осуществляться с использованием нескольких HTTP-запросов, отправляемых с 4 разных IP-адресов, размещённых в разных датацентрах и принадлежащих к разным автономным системам. Проверка признаётся успешной только, если как минимум 3 из 4 запросов с разных IP оказались успешными.

Показать

Проверка с нескольких подсетей позволит минимизировать риски получения сертификатов на чужие домены путём проведения целевых атак, перенаправляющих трафик через подстановку фиктивных маршрутов при помощи BGP. При использовании многопозиционной системы проверки атакующему потребуется одновременно добиться перенаправления маршрутов для нескольких автономных систем провайдеров с разными аплинками, что значительно сложнее, чем перенаправление единичного маршрута. Отправка запросов с разных IP кроме того повысит надёжность проверки в случае попадания единичных хостов Let’s Encrypt в списки блокировки (например, в РФ некоторые IP letsencrypt.org попадали под блокировку Роскомнадзора).

До 1 июня будет действовать переходных период, допускающий генерацию сертификатов при успешном прохождении проверки из первичного датацентра, при недоступности хоста с остальных подсетей (например, такое может случиться, если администратор хоста на межсетевом экране разрешил запросы только с основного датацентра Let’s Encrypt или из-за нарушения синхронизации зон в DNS). На основе логов будет подготовлен белый список для доменов, у которых наблюдаются проблемы с проверкой с 3 дополнительных датацентров. В белый список попадут только домены с учётной записью в ACME с заполненными контактными данными. В случае если домен не попал в белый список автоматически заявку на помещение также можно отправить через специальную форму.

В настоящее время проектом Let’s Encrypt выдано 113 млн сертификатов, охватывающих около 190 млн доменов (год назад было охвачено 150 млн доменов, а два года назад — 61 млн). По статистике сервиса Firefox Telemetry общемировая доля запросов страниц по HTTPS составляет 81% (год назад 77%, два года назад 69%), а в США — 91%.

Дополнительно можно отметить, намерение компании Apple прекратить в браузере Safari доверие к сертификатам, время жизни которых превышает 398 дней (13 месяцев). Ограничение планируется ввести только для cертификатов, выписанных начиная с 1 сентября 2020 года. Для полученных до 1 сентября сертификатов с длительным сроком действия доверие будет сохранено, но ограничено 825 днями (2.2 года).

Изменение может негативно отразиться на бизнесе удостоверяющих центров, продающих дешёвые сертификаты с длительным сроком действия, доходящим до 5 лет. По мнению Apple генерация подобных сертификатов создаёт дополнительные угрозы безопасности, мешает оперативному внедрению новых криптостандартов и позволяет злоумышленникам длительное время контролировать трафик жертвы или использовать для фишинга в случае незаметной утечки сертификата в результате взлома.

Источник

50 лет с момента публикации RFC-1

7 апреля 1969 года был опубликован Request for Comments: 1 (документ, содержащий технические спецификации и стандарты, широко применяемые во всемирной сети). Каждый документ RFC имеет собственный уникальный номер, который используется при ссылке на него. Сейчас первичной публикацией документов RFC занимается IETF под эгидой открытой организации Общество Интернета (англ. Internet Society, ISOC). Именно Общество Интернета обладает правами на RFC.

Документ RFC-1 был написан Стивом Крокером (в то время он был аспирантом Калтеха). Именно он придумал публиковать технические документы в формате RFC. Также он участвовал в создании ARPA «Network Working Group», в рамках которого впоследствии был создан IETF. C 2002 года работал в ICANN, а с 2011 по 2017 возглавлял эту организацию.

Источник

25 лет Рунету

Сегодня — день рождения Рунета!

7 апреля 1994 года для России был зарегистрирован домен .RU и внесён в международную базу данных национальных доменов верхнего уровня. Перед этим, 4 декабря 1993 года, на собрании крупнейших российских провайдеров того времени (Demos Plus, Techno, GlasNet, SovAm Teleport, EUnet/Relcom, X-Atom, FREEnet) было подписано Соглашение «О порядке администрирования зоны .RU».

Показать

Таким образом, Россия была официально признана государством, представленным в Интернете. Согласно соглашению, обязанности по администрированию и техническому сопровождению национального домена .RU были переданы Российскому НИИ Развития Общественных Сетей (РосНИИРОС), который до 2000 года регистрировал все домены в зоне RU.

Уже в первый день существования зоны в ней были зарегистрированы, а впоследствии и делегированы первые доменные имена. До этого все отечественные ресурсы Сети, начиная с 1991 года, размещались в международных доменах и в зоне .SU. Однако, после распада Советского Союза началась работа над созданием доменов новых независимых государств, и со временем появились 15 доменов для бывших советских республик.

Сегодня в России введен еще один домен .рф — национальный домен верхнего уровня для Российской Федерации. Это первый в Интернете домен на кириллице. Отличием от введённого ранее домена «.ru» является то, что в домене «.рф» все имена второго уровня пишутся исключительно кириллицей. Регистрация имён в новой зоне началась в ноябре 2009 года и сначала была доступна только для государственных структур и владельцев торговых знаков. Открытая регистрация доменных имён всех желающих в зоне .рф началась спустя год — в ноябре 2010 года.

30 лет Всемирной паутине

12 марта 1989 года английский специалист в области информатики сэр Тимоти Бернерс-Ли (Tim Berners-Lee) предложил руководству CERN глобальный гипертекстовый проект, который позволил бы ученым организовать совместное хранение и общий доступ к информации. Это был проект Всемирной паутины — World Wide Web или WWW, который был одобрен и реализован.

Ключевые элементы, которые Бернерс-Ли разработал и реализовал совместно со своими соратниками, и сейчас лежат в основе Паутины. Это идентификаторы URL (частный случай унифицированного идентификатора ресурса URI), протокол передачи гипертекстовых документов HTTP и язык разметки таких документов HTML.

Показать

В рамках проекта были выработаны первые спецификации, которые стали стандартами WWW, создан первый в мире веб-сервер «httpd» и первый в мире гипертекстовый веб-браузер, одновременно служивший редактором HTML, работающим по принципу WYSIWYG (What You See Is What You Get — «что видишь, то и получишь»).

Изобретения и разработки такого уровня трансформируют представления людей о том, как использовать новые технологии. Паутина работает на основе сети Интернет, но именно ее многие пользователи и считают интернетом.

Источник

Совершеннолетие Википедии

Сегодня универсальная энциклопедия, свободно распространяемая во всемирной сети Интернет, статьи которой создаются на многих языках мира коллективным трудом добровольных авторов, отмечает своё совершеннодетие.

Прародителем Википедии принято считать Нупедию (Nupedia) — проект энциклопедии на английском языке, реализующий принципы свободы информации. Статьи Нупедии писали ученые и люди из академической среды, а основателями были Ларри Сэнгер (Larry Sanger) и Джимми Уэйлс (Jimmy Wales). Чтобы ускорить пополнение энциклопедии, 18 лет назад, 15 января 2001 года, Уэйлс и Сэнгер открыли сайт «Википедия». С тех пор принимать участие в редактировании энциклопедии мог любой пользователь Всемирной сети.

409 лет открытия спутников Юпитера

В ночь на 7 января 1610 года Галилео Галилей направляет созданный им 32-х кратный телескоп на небо. Он увидел там не только лунный пейзаж, горные цепи и вершины, но и открыл четыре наиболее крупных спутника Юпитера, которые сейчас носят название «галилеевых».

Благодаря своему открытию, которое он описал в сочинении «Звёздный вестник», Галилей вскоре становится самым знаменитым учёным Европы. Книга имела сенсационный успех, даже коронованные особы спешили обзавестись телескопом. Несколько телескопов Галилей подарил Венецианскому сенату, который в знак благодарности назначил его пожизненным профессором с окладом 1000 флоринов.

Показать

Немецкий астроном Симон Мариус (1573-1624) одновременно и независимо от Галилея открыл все четыре спутника Юпитера (1610), и дал им имена Ио, Европа, Ганимед и Каллисто. История распорядилась так, что Галилея считают первооткрывателем спутников, за которыми закрепились имена, данные Мариусом.

Спутник Юпитера Ганимед имеет диаметр превосходящий диаметр Меркурия. Под поверхностью Европы обнаружен глобальный океан, а Ио известен тем, что на нём действуют самые мощные в Солнечной системе вулканы. Каллисто — одно из самых кратерированных тел в Солнечной системе. Поверхность спутника очень старая, около 4 млрд. лет, а его геологическая активность крайне низкая. У Юпитера имеются слабые планетарные кольца.

Спутники ярки и вращаются по достаточно удалённым от планеты орбитам, так что их легко различить даже в полевой бинокль. Первенство в открытии спутников оспаривал также немецкий астроном Симон Мариус, который увидел их еще в 1609 году, но не опубликовал открытие. Позднее именно Мариус дал этим четырем спутникам названия, взяв имена из древнегреческих мифов.

Юпитер исследовался восемью автоматическими межпланетными станциями НАСА. Наибольшее значение имели исследования с помощью аппаратов «Пионер» и «Вояджер», и позднее «Галилео». Последним аппаратом, посетившим Юпитер, был зонд «Новые горизонты», направляющийся к Плутону.

На сегодняшний день ученым известно 79 спутников Юпитера, среди которых Галилеевы — самые крупные.

35 лет назад создан прототип первого компьютерного вируса

11 ноября 1983 года американский студент из Университета Южной Калифорнии Фред Коэн составил программу, демонстрировавшую возможность заражения компьютера со скоростью размножения от 5 минут до 1 часа. Такую программу стали называть вирусом, определяя его как разновидность компьютерных программ, отличительной особенностью которой является способность к саморепликации (и, возможно, нанесения ущерба путём повреждения или полного уничтожения всех файлов и данных, подконтрольных пользователю, от имени которого была запущена заражённая программа, а также повреждения работоспособности или полного уничтожения операционной системы со всеми файлами в целом).

Показать

Известны десятки тысяч компьютерных вирусов, которые распространяются через Интернет по всему миру, организуя вирусные эпидемии.

На следующий год Коэн написал работу, в которой не только предвосхитил опасности распространения вирусов по компьютерным сетям, но и рассказал о возможности создания антивирусных программ.

Первый не лабораторный вирус, называющийся «Brain», способный заражать только дискеты, появился в январе 1986 года и имел пакистанское происхождение. А первая антивирусная программа была разработана в 1988 году.

В дальнейшем вирусы стали применять в коммерческих, политических и даже военных целях.

День первой передачи сообщения через сеть ARPANET

49 лет назад в 1969 году в этот день было передано первое сообщение по прообразу нынешнего Интернета — сети ARPANET. Это событие сыграло огромную роль и стало знаковым в истории развития связи и появления сети Интернет.

Название системы ARPANET (от англ. Advanced Research Projects Agency Network) является аббревиатурой названия организации, созданной, в том числе при непосредственном участии Министерства обороны США. В переводе на русский язык название организации — Агентство передовых исследовательских проектов, а её аббревиатура на английском языке выглядела как ARPA.

Показать

Новая система представляла собой компьютерную сеть, поэтому её наименование и образовалось путём присоединения слова «network» к аббревиатуре названия агентства, её создавшего. Так появилась ARPANET. И создание принципиально новой системы передачи информации открыло новые горизонты в области связи.

Появление в США Агентства передовых исследовательских проектов было ответом на запуск СССР первого искусственного спутника Земли в 1957 году. Инициируя создание компьютерной сети, Министерство обороны США преследовало своей целью получить на выходе проекта новую безопасную систему передачи информации, способную функционировать в условиях возможного ядерного конфликта, а также ведение разработок по управлению структурами государства во время войны через новую систему.

Участие в проекте учёных из ведущих университетов США, а также привлечение частных капиталовложений обеспечивалось как их материальной заинтересованностью в проекте, так и тем, какие перспективы предоставят ведущиеся разработки в научной и коммерческой практике помимо применения их в системе национальной безопасности и обороноспособности страны.

Среди разработчиков ARPANET прежде всего выделяют имена Дж. Ликлайдера, Л. Клейнрока, А. Сазерленда, Б. Тейлора и др. К работе по проекту были подключены такие учебные заведения, как Калифорнийские Университеты в Лос-Анджелесе, Санта-Барбаре, Стэнфордский Исследовательский Центр, Университет Юты.

На начальном этапе было решено объединить компьютерной сетью те Университеты и Центры, которые принимали участие в её создании, а испытания первой передачи информации провести между двумя наиболее удалёнными друг от друга компьютерами. Так были определены две стороны, которые связались друг с другом 29 октября 1969 года при помощи компьютерной сети ARPANET: ими стали операторы компьютеров Калифорнийского и Стэнфордского Университетов, удалённые друг от друга на расстояние свыше 600 километров.

Решили передать и подтвердить получение только одного слова: login. Слово должно было передаваться по слогам, причём первый слог передавался из Калифорнии, а второй после подтверждения получения — из Стэнфорда. Первый слог вводился оператором Калифорнийского Университета по буквам с запросом получения каждой буквы и подтверждением её получения. Передать удалось лишь первые две буквы, после чего произошёл технический сбой. Через час, около 22 часов 30 минут вторая попытка передачи была успешно проведена.

Некоторые исследователи называют эту дату как один из вариантов рождения сети Internet, хотя споров по этому поводу очень много, так же, как и вариантов того, когда же родился Интернет. Факт в том, что рождение Интернета уже невозможно рассматривать в отрыве от истории возникновения сети ARPANET, так же, как и многие технические решения, порождённые прототипом, и используемые по сей день в Интернете.

ARPANET рос технически и расширял горизонты сферы покрытия. Так, в 1973 году к сети были подключены Великобритания и Норвегия, а позже и многие другие страны. Это превратило сеть в международную. Постепенно стало расширяться использование сети в научных целях, позднее — в коммерческих. В определённый момент произошло разделение сети на два направления: одно обеспечивало запросы Министерства обороны США, а другое использовалось в научных и исследовательских целях.

Развитие технологий и появление конкурентов привело к тому, что APRANET перестала существовать в 1990 году.

Ранее Ctrl + ↓
Наверх